Interactive effects of soil water deficit and air vapour pressure deficit on mesophyll conductance to CO2 in Vitis vinifera and Olea europaea.

نویسندگان

  • A Perez-Martin
  • J Flexas
  • M Ribas-Carbó
  • J Bota
  • M Tomás
  • J M Infante
  • A Diaz-Espejo
چکیده

The present work aims to study the interactive effect of drought stress and high vapour pressure deficit (VPD) on leaf gas exchange, and especially on mesophyll conductance to CO(2) (g(m)), in two woody species of great agronomical importance in the Mediterranean basin: Vitis vinifera L. cv. Tempranillo and Olea europaea L. cv. Manzanilla. Plants were grown in specially designed outdoor chambers with ambient and below ambient VPD, under both well-irrigated and drought conditions. g(m) was estimated by the variable J method from simultaneous measurements of gas exchange and fluorescence. In both species, the response to soil water deficit was larger in g(s) than in g(m), and more important than the response to VPD. Olea europaea was apparently more sensitive to VPD, so that plants growing in more humid chambers showed higher g(s) and g(m). In V. vinifera, in contrast, soil water deficit dominated the response of g(s) and g(m). Consequently, changes in g(m)/g(s) were more related to VPD in O. europaea and to soil water deficit in V. vinifera. Most of the limitations of photosynthesis were diffusional and especially due to stomatal closure. No biochemical limitation was detected. The results showed that structural parameters played an important role in determining g(m) during the acclimation process. Although the relationship between leaf mass per unit area (M(A)) with g(m) was scattered, it imposed a limitation to the maximum g(m) achievable, with higher values of M(A) in O. europaea at lower g(m) values. M(A) decreased under water stress in O. europaea but it increased in V. vinifera. This resulted in a negative relationship between M(A) and the CO(2) draw-down between substomatal cavities and chloroplasts in O. europaea, while being positive in V. vinifera.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soil water deficits decrease the internal conductance to CO2 transfer but atmospheric water deficits do not.

The internal conductance to CO2 supply from substomatal cavities to sites of carboxylation poses a large limitation to photosynthesis. It is known that internal conductance is decreased by soil water deficits, but it is not known if it is affected by atmospheric water deficits (i.e. leaf to air vapour pressure deficit, VPD). The aim of this paper was to examine the responses of internal conduct...

متن کامل

Branch development controls leaf area dynamics in grapevine (Vitis vinifera) growing in drying soil.

BACKGROUND AND AIMS Soil water deficit is a major abiotic stress with severe consequences for the development, productivity and quality of crops. However, it is considered a positive factor in grapevine management (Vitis vinifera), as it has been shown to increase grape quality. The effects of soil water deficit on organogenesis, morphogenesis and gas exchange in the shoot were investigated. ...

متن کامل

On the Use of Leaf Spectral Indices to Assess Water Status and Photosynthetic Limitations in Olea europaea L. during Water-Stress and Recovery

Diffusional limitations to photosynthesis, relative water content (RWC), pigment concentrations and their association with reflectance indices were studied in olive (Olea europaea) saplings subjected to water-stress and re-watering. RWC decreased sharply as drought progressed. Following rewatering, RWC gradually increased to pre-stress values. Photosynthesis (A), stomatal conductance (gs), meso...

متن کامل

Post-anthesis Drought Stress Effects on Photosynthesis Rate and Chlorophyll Content of Wheat Genotypes

Water stress is one of the major abiotic stresses in agriculture worldwide. In order to assess photosynthesis response and grain yield of 25 wheat genotypes under water deficit (post-anthesis stress) conditions, a 2-year study (2010-12) was carried out as a split-plot arrangement using randomized complete block design with three replications. The most sensitive gas exchange variable to water de...

متن کامل

Genetic variation in a grapevine progeny (Vitis vinifera L. cvs Grenache×Syrah) reveals inconsistencies between maintenance of daytime leaf water potential and response of transpiration rate under drought

In the face of water stress, plants evolved with different abilities to limit the decrease in leaf water potential, notably in the daytime (ΨM). So-called isohydric species efficiently maintain high ΨM, whereas anisohydric species cannot prevent ΨM from dropping as soil water deficit develops. The genetic and physiological origins of these differences in (an)isohydric behaviours remain to be cl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 60 8  شماره 

صفحات  -

تاریخ انتشار 2009